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This talk considers how many conjugacy classes of reflections a
map can have, under various transitivity conditions. It is well
known that regular maps have at most three classes of reflections.
I shall show that for vertex- and for face-transitive maps there is no
restriction on their number or size, whereas edge-transitive maps
can have at most four classes of reflections. Examples are
constructed, using topology, covering spaces and group theory, to
show that various distributions of reflections can be achieved.



Motivation from Riemann surfaces and algebraic curves

A compact Riemann surface S can be regarded as a complex
algebraic curve C. The conjugacy classes of orientation-reversing
involutions of S correspond to the real forms of C, and the
reflections correspond to those with real points. By Bely̆ı’s
Theorem C is defined over an algebraic number field if and only the
complex structure on S it is obtained from a map (= dessin
d’enfant = graph embedding).

There are connections with work by Natanzon, by Bujalance,
Gromadzki and Izquierdo, and by Bujalance and Singerman on
symmetries of Riemann surfaces, and by Melekoğlu and Singerman
on patterns of reflections of regular maps.



Maps and reflections

A map M is (for this talk) an embedding of a graph G (finite,
connected, possibly with loops and multiple edges) in a surface S
(compact, connected, oriented, without boundary), so that the
faces (connected components of S \ G) are homeomorphic to discs.

A reflection of a map M is an automorphism which fixes a point p
and acts as a euclidean reflection on some neighbourhood of p; one
can choose p to be a vertex or the midpoint of an edge or face.



Reflections of orientably regular maps

Define cr(M) to be the number of conjugacy classes of reflections
in AutM (i.e. the number of ‘visibly different’ reflections of M).

If M is orientably regular (i.e. the orientation-preserving
automorphism group Aut+M is transitive on directed edges) then
cr(M) ≤ 3, and all values within this bound can be achieved: for
instance, the tetrahedron and the cube have cr(M) = 1 and 2,
while the torus maps {4, 4}b,0 and {4, 4}b,c (c 6= b, 0) have
cr(M) = 3 and 0.

The aim of this talk is to consider what can be said if one relaxes
the requirement of orientable regularity.



Orientably regular maps with cr(M) = 1 and 2

Figure : The tetrahedron and the cube

Axes of symmetry, in red, represent the conjugacy classes of
reflections.



Orientably regular maps with cr(M) = 3 and 0

Figure : The torus maps {4, 4}2,0 and {4, 4}2,1

Identify opposite sides of each outer square to form a torus.

The torus map {4, 4}b,c is the square tessellation of C/(b + ci)Z[i ].



In the case of vertex-transitive maps, there are no group-theoretic
or arithmetic restrictions on the number of conjugacy classes of
reflections, or on their sizes:

Theorem
Let G be a finite group with a subgroup G + of index 2, and let
K1, . . . ,Kk be distinct conjugacy classes of involutions in G \ G +

for some k ≥ 1. Then there is a vertex-transitive map M, on a
compact orientable surface without boundary, such that
AutM∼= G and the reflections of M correspond to the elements
of the conjugacy classes Ki .

Corollary

If c1, . . . , ck are positive integers for some k ≥ 1, there is a
vertex-transitive map M, on a compact orientable surface without
boundary, such that the reflections of M form k conjugacy classes
of sizes c1, . . . , ck .



Outline proof of the Theorem and Corollary

Choose gi ∈ Ki (i = 1, . . . , k), and if necessary gk+1, . . . , gl ∈ G +

so that 〈g1, . . . , gl〉 = G . Let C be the Cayley graph for G , with
single undirected edges between g and ggi (i ≤ k), but two reverse
directed edges for any involutions gi (i > k). Then G acts on C by
h : g 7→ h−1g , with each h = ggig

−1 ∈ Ki reversing edges between
g and ggi (g ∈ G , i ≤ k); no other h ∈ G has fixed points in C .

Extend this action of G to the boundary S of a tubular
neighbourhood of C (spheres around vertices, tubes around edges).

Draw a 1-vertex map on a fundamental region F for G on S (a
sphere minus discs), so that |G | copies of it form a vertex-transitive
map M on S, with each h ∈ Ki acting as a reflection.

For the Corollary, given c1, . . . , ck , take G = Dn1 × · · · × Dnk with
ni = ci or 2ci as ci is odd or even, and take G + to consist of those
elements with an even number of reflections as coordinates.



Using map duality, one can replace the condition of
vertex-transitivity with face-transitivity. The situation is
completely different for edge-transitive maps:

Theorem
If M is an edge-transitive map then cr(M) ≤ 4.

e

Figure : Four reflections at a typical edge e



The bound cr(M) ≤ 4 applies to all (connected) edge-transitive
maps, possibly non-compact, non-orientable, or with boundary.

Examples show that cr(M) can take any value k ≤ 4; the maps
with cr(M) = 4 are all just-edge-transitive, i.e. neither vertex- nor
face-transitive (equivalently, of automorphism type 3 in the
Graver-Watkins taxonomy of edge-transitive maps). Conversely:

Theorem
If M is a just-edge-transitive map then 1 ≤ cr(M) ≤ 4.

All four values are attained by maps which can be chosen to be
compact, without boundary, and orientable or non-orientable.



A just-edge-transitive map with cr(M) = 2

Figure : Octagonal and hexagonal faces of M

8 + 12 = 20 vertices = vertices and edge-midpoints of a cube C.
6× 8 = 48 edges = ‘knight’s moves’.
6 + 8 = 14 octagonal and hexagonal faces shown above.
χ = −14, g = 8, AutM = Aut C ∼= S4 × C2, cr(M) = cr(C) = 2.



A just-edge-transitive map with cr(M) = 4
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M is a double cover of the torus map {4, 4}b,0 (= square
tessellation of C/bZ[i ]), for b even, branched over alternate
vertices and face-centres (red dots). The genus is 1 + b2/2.



Types of reflections

A flag is a mutually incident vertex-edge-face triple.

For each i = 0, 1, 2, a reflection has type i if it transposes the
i-dimensional components of some pair of flags while preserving
their j-dimensional components for j 6= i .

Figure : Reflections of types 0, 1, 2

Each reflection has at least one type, and may have more than one!



Let cri (M) be the number of conjugacy classes of reflections of
type i of a map M, so that

cr(M) ≤ cr0(M) + cr1(M) + cr2(M).

(Remember: a reflection may be of more than one type.)

Theorem
Given any integers c0, c1, c2 ≥ 0, with c0, c2 ≥ 1 if c1 is odd, there
is a compact map M with cri (M) = ci for i = 0, 1 and 2, and

cr(M) = c0 + c1 + c2.



General algebraic method
Maps M correspond to permutation representations of the group

Γ := 〈R0,R1,R2 | R2
i = (R0R2)2 = 1〉 ∼= V4 ∗ C2,

acting on the set Φ of flags of M. Each generator Ri changes the
i-dimensional component of a flag while fixing the other two. By
the defining relations (obviously satisfied) Γ is the free product of

〈R0,R2〉 ∼= V4 := C2 × C2 and 〈R1〉 ∼= C2.

v
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φR2 φR0R2

Figure : Generators Ri acting on a flag φ = (v , e, f )



M is connected if and only if Γ is transitive on Φ, in which case
M corresponds to a conjugacy class of map subgroups
M = Γφ ≤ Γ, the stabilisers of flags φ ∈ Φ.

Then AutM∼= N/M with N = NΓ(M), the normaliser of M in Γ.

M is vertex-, edge- or face-transitive if and only if Γ = ND where
D = 〈R1,R2〉, 〈R0,R2〉 or 〈R0,R1〉; equivalently N is transitive on
the cosets of D, and vice versa.

Reflections of type i of M are induced by conjugates of Ri in N,
equivalently fixed points of Ri in the action of Γ on cosets of N.

To construct maps M with given transitivity and reflection
properties, find a permutation representation of Γ (≡ quotient map
M) with D transitive and R0,R1,R2 having the required fixed
points. Take N to be a point-stabiliser (map subgroup for M), get
a presentation for N (Reidemeister-Schreier algorithm), find
M ≤ N with N = NΓ(M), and let M be the corresponding map.



Example
To construct arbitrarily large just-edge-transitive maps M with
cr(M) = 4, take N = 〈〈R1〉〉Γ (normal closure of R1 in Γ), so

N = 〈 S1 = R1, S2 = RR0
1 , S3 = RR2

1 , S4 = RR0R2
1 | S2

i = 1 〉
∼= C2 ∗ C2 ∗ C2 ∗ C2,

apply an epimorphism N → C := Coxeter group with diagram

s1

s2

s4s3

6
6 6

and use a recent result of Caprace and Minasyan to show that C is
conjugacy separable, so there are arbitrarily large finite images G
of C (and hence of N) with the images of the reflections Si in
distinct conjugacy classes. The maps M corresponding to the
kernels M of these epimorphisms N → G are as required.


